/* * PXA2xx SPI DMA engine support. * * Copyright (C) 2013, Intel Corporation * Author: Mika Westerberg * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include "spi-pxa2xx.h" static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data) { struct device *dev = &drv_data->pdev->dev; if (!drv_data->dma_mapped) return; dma_unmap_single(dev, drv_data->rx_dma, drv_data->len, DMA_FROM_DEVICE); dma_unmap_single(dev, drv_data->tx_dma, drv_data->len, DMA_TO_DEVICE); drv_data->dma_mapped = 0; } static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data, bool error) { struct spi_message *msg = drv_data->cur_msg; /* * It is possible that one CPU is handling ROR interrupt and other * just gets DMA completion. Calling pump_transfers() twice for the * same transfer leads to problems thus we prevent concurrent calls * by using ->dma_running. */ if (atomic_dec_and_test(&drv_data->dma_running)) { void __iomem *reg = drv_data->ioaddr; /* * If the other CPU is still handling the ROR interrupt we * might not know about the error yet. So we re-check the * ROR bit here before we clear the status register. */ if (!error) { u32 status = read_SSSR(reg) & drv_data->mask_sr; error = status & SSSR_ROR; } /* Clear status & disable interrupts */ write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); write_SSSR_CS(drv_data, drv_data->clear_sr); if (!pxa25x_ssp_comp(drv_data)) write_SSTO(0, reg); if (!error) { pxa2xx_spi_unmap_dma_buffers(drv_data); /* Handle the last bytes of unaligned transfer */ drv_data->tx += drv_data->tx_map_len; drv_data->write(drv_data); drv_data->rx += drv_data->rx_map_len; drv_data->read(drv_data); msg->actual_length += drv_data->len; msg->state = pxa2xx_spi_next_transfer(drv_data); } else { /* In case we got an error we disable the SSP now */ write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); msg->state = ERROR_STATE; } tasklet_schedule(&drv_data->pump_transfers); } } static void pxa2xx_spi_dma_callback(void *data) { pxa2xx_spi_dma_transfer_complete(data, false); } static struct dma_async_tx_descriptor * pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data, enum dma_transfer_direction dir) { struct pxa2xx_spi_master *pdata = drv_data->master_info; struct chip_data *chip = drv_data->cur_chip; enum dma_slave_buswidth width; enum intel_mid_dma_msize msize; enum dma_ctrl_flags flag; struct intel_mid_dma_slave *mid_slave; struct dma_slave_config *cfg; struct dma_chan *chan; int ret; switch (drv_data->n_bytes) { case 1: width = DMA_SLAVE_BUSWIDTH_1_BYTE; break; case 2: width = DMA_SLAVE_BUSWIDTH_2_BYTES; break; default: width = DMA_SLAVE_BUSWIDTH_4_BYTES; break; } switch (chip->dma_burst_size) { case 1: msize = LNW_DMA_MSIZE_1; break; case 4: msize = LNW_DMA_MSIZE_4; break; case 8: default: msize = LNW_DMA_MSIZE_8; break; } flag = DMA_PREP_INTERRUPT | DMA_CTRL_ACK; if (dir == DMA_MEM_TO_DEV) { mid_slave = &drv_data->dmas_tx; cfg = &mid_slave->dma_slave; mid_slave->hs_mode = LNW_DMA_HW_HS; mid_slave->cfg_mode = LNW_DMA_MEM_TO_PER; mid_slave->device_instance = drv_data->master->bus_num; cfg->direction = dir; cfg->src_addr = drv_data->tx_dma; cfg->dst_addr = drv_data->ssdr_physical; cfg->src_addr_width = width; cfg->dst_addr_width = width; cfg->src_maxburst = msize; cfg->dst_maxburst = msize; cfg->slave_id = pdata->tx_slave_id; chan = drv_data->tx_chan; } else { mid_slave = &drv_data->dmas_rx; cfg = &mid_slave->dma_slave; mid_slave->hs_mode = LNW_DMA_HW_HS; mid_slave->cfg_mode = LNW_DMA_PER_TO_MEM; mid_slave->device_instance = drv_data->master->bus_num; cfg->direction = dir; cfg->src_addr = drv_data->ssdr_physical; cfg->dst_addr = drv_data->rx_dma; cfg->src_addr_width = width; cfg->dst_addr_width = width; cfg->src_maxburst = msize; cfg->dst_maxburst = msize; cfg->slave_id = pdata->rx_slave_id; chan = drv_data->rx_chan; } ret = dmaengine_slave_config(chan, cfg); if (ret) { dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n"); return NULL; } return chan->device->device_prep_dma_memcpy(chan, cfg->dst_addr, cfg->src_addr, drv_data->len, flag); } static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param) { struct pci_dev *dmac; dmac = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_GP_DMAC2_MOOR, NULL); if (!dmac) { pr_err("spi-pxa2xx: Can't find GP DMAC"); return false; } if (&dmac->dev == chan->device->dev) return true; return false; } bool pxa2xx_spi_dma_is_possible(size_t len) { return len <= MAX_DMA_LEN; } int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data) { const struct chip_data *chip = drv_data->cur_chip; struct device *dev = &drv_data->pdev->dev; if (!chip->enable_dma) return 0; /* Don't bother with DMA if we can't do even a single burst */ if (drv_data->len < (chip->dma_burst_size * drv_data->n_bytes)) return 0; if (!drv_data->tx) { drv_data->tx = drv_data->dummy; drv_data->tx_end = drv_data->tx + drv_data->len; } drv_data->tx_map_len = drv_data->len; drv_data->tx_dma = dma_map_single(dev, drv_data->tx, drv_data->tx_map_len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, drv_data->tx_dma))) { dev_err(dev, "ERROR : tx dma mapping failed\n"); return 0; } if (!drv_data->rx) { drv_data->rx = drv_data->dummy; drv_data->rx_end = drv_data->rx + drv_data->len; } drv_data->rx_map_len = drv_data->len; drv_data->rx_dma = dma_map_single(dev, drv_data->rx, drv_data->rx_map_len, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(dev, drv_data->rx_dma))) { dma_unmap_single(dev, drv_data->tx_dma, drv_data->tx_map_len, DMA_TO_DEVICE); dev_err(dev, "ERROR : rx dma mapping failed\n"); return 0; } return 1; } irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) { u32 status; status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr; if (status & SSSR_ROR) { dev_err(&drv_data->pdev->dev, "FIFO overrun\n"); dmaengine_terminate_all(drv_data->rx_chan); dmaengine_terminate_all(drv_data->tx_chan); pxa2xx_spi_dma_transfer_complete(drv_data, true); return IRQ_HANDLED; } return IRQ_NONE; } int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst) { struct dma_async_tx_descriptor *tx_desc, *rx_desc; struct chip_data *chip = drv_data->cur_chip; chip->dma_burst_size = dma_burst; tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV); if (!tx_desc) { dev_err(&drv_data->pdev->dev, "failed to get DMA TX descriptor\n"); return -EBUSY; } rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM); if (!rx_desc) { dev_err(&drv_data->pdev->dev, "failed to get DMA RX descriptor\n"); return -EBUSY; } /* We are ready when RX completes */ rx_desc->callback = pxa2xx_spi_dma_callback; rx_desc->callback_param = drv_data; dmaengine_submit(rx_desc); dmaengine_submit(tx_desc); return 0; } void pxa2xx_spi_dma_start(struct driver_data *drv_data) { dma_async_issue_pending(drv_data->rx_chan); dma_async_issue_pending(drv_data->tx_chan); atomic_set(&drv_data->dma_running, 1); } int pxa2xx_spi_dma_setup(struct driver_data *drv_data) { struct pxa2xx_spi_master *pdata = drv_data->master_info; dma_cap_mask_t mask; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); drv_data->dummy = devm_kzalloc(&drv_data->pdev->dev, SZ_4K, GFP_KERNEL); if (!drv_data->dummy) return -ENOMEM; drv_data->tx_chan = dma_request_channel(mask, pxa2xx_spi_dma_filter, pdata); if (!drv_data->tx_chan) return -ENODEV; drv_data->rx_chan = dma_request_channel(mask, pxa2xx_spi_dma_filter, pdata); if (!drv_data->rx_chan) { dma_release_channel(drv_data->tx_chan); drv_data->tx_chan = NULL; return -ENODEV; } return 0; } void pxa2xx_spi_dma_release(struct driver_data *drv_data) { if (drv_data->rx_chan) { dmaengine_terminate_all(drv_data->rx_chan); dma_release_channel(drv_data->rx_chan); drv_data->rx_chan = NULL; } if (drv_data->tx_chan) { dmaengine_terminate_all(drv_data->tx_chan); dma_release_channel(drv_data->tx_chan); drv_data->tx_chan = NULL; } } void pxa2xx_spi_dma_suspend(struct driver_data *drv_data) { struct dma_chan *txchan, *rxchan; if (!drv_data->master_info->enable_dma) return; if (drv_data->rx_chan) { rxchan = drv_data->rx_chan; rxchan->device->device_control(rxchan, DMA_TERMINATE_ALL, 0); rxchan->device->device_control(rxchan, DMA_PAUSE, 0); } if (drv_data->tx_chan) { txchan = drv_data->tx_chan; txchan->device->device_control(txchan, DMA_TERMINATE_ALL, 0); txchan->device->device_control(txchan, DMA_PAUSE, 0); } } void pxa2xx_spi_dma_resume(struct driver_data *drv_data) { struct dma_chan *txchan, *rxchan; if (!drv_data->master_info->enable_dma) return; if (drv_data->rx_chan) { rxchan = drv_data->rx_chan; rxchan->device->device_control(rxchan, DMA_RESUME, 0); } if (drv_data->tx_chan) { txchan = drv_data->tx_chan; txchan->device->device_control(txchan, DMA_RESUME, 0); } } #define SPI_MAX_FIFO 16 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip, struct spi_device *spi, u8 bits_per_word, u32 *burst_code, u32 *threshold) { u32 burst_size = 8; /* Workaround: less then 1Mhz, need to set burst_size to 1 */ if (chip->speed_hz < 1000000 || (bits_per_word == 32 && chip->speed_hz < 8000000)) burst_size = 1; *burst_code = burst_size; *threshold = SSCR1_RxTresh(burst_size) | SSCR1_TxTresh(SPI_MAX_FIFO - burst_size); return 0; }