/* * PXA2xx SPI LPSS DMA support. * * Copyright (C) 2014, Intel Corporation * Author: Huiquan Zhong * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include "spi-pxa2xx.h" static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data, bool error) { struct spi_message *msg = drv_data->cur_msg; /* * It is possible that one CPU is handling ROR interrupt and other * just gets DMA completion. Calling pump_transfers() twice for the * same transfer leads to problems thus we prevent concurrent calls * by using ->dma_running. */ if (atomic_dec_and_test(&drv_data->dma_running)) { void __iomem *reg = drv_data->ioaddr; /* * If the other CPU is still handling the ROR interrupt we * might not know about the error yet. So we re-check the * ROR bit here before we clear the status register. */ if (!error) { u32 status = read_SSSR(reg) & drv_data->mask_sr; error = status & SSSR_ROR; } /* Clear status & disable interrupts */ write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg); write_SSSR_CS(drv_data, drv_data->clear_sr); if (!pxa25x_ssp_comp(drv_data)) write_SSTO(0, reg); if (!error) { msg->actual_length += drv_data->len; msg->state = pxa2xx_spi_next_transfer(drv_data); } else { /* In case we got an error we disable the SSP now */ write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); msg->state = ERROR_STATE; } tasklet_schedule(&drv_data->pump_transfers); } } static void pxa2xx_spi_dma_callback(void *data) { struct driver_data *drv_data = data; struct chip_data *chip = drv_data->cur_chip; void __iomem *reg = drv_data->ioaddr; u32 cr1; drv_data->tx += drv_data->tx_map_len; drv_data->rx += drv_data->rx_map_len; /* use interrupt to poll the last bytes */ cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; write_SSCR1(cr1, reg); } bool pxa2xx_spi_dma_is_possible(size_t len) { return len <= MAX_DMA_LEN; } int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data) { const struct chip_data *chip = drv_data->cur_chip; if (!chip->enable_dma) return 0; /* Don't bother with DMA if we can't do even a single burst */ if (drv_data->len < chip->dma_burst_size) return 0; if (!drv_data->tx) { drv_data->tx = drv_data->dummy; drv_data->tx_end = drv_data->tx + drv_data->len; } if (!drv_data->rx) { drv_data->rx = drv_data->dummy; drv_data->rx_end = drv_data->rx + drv_data->len; } return 1; } irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data) { void *lpss_dma = drv_data->dma_priv; u32 status; status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr; if (status & SSSR_ROR) { dev_err(&drv_data->pdev->dev, "FIFO overrun\n"); lpss_dma_stop_tx(lpss_dma); lpss_dma_stop_rx(lpss_dma); pxa2xx_spi_dma_transfer_complete(drv_data, true); return IRQ_HANDLED; } if (status & SSSR_TINT) { write_SSSR(SSSR_TINT, drv_data->ioaddr); if (drv_data->read(drv_data)) { pxa2xx_spi_dma_transfer_complete(drv_data, false); return IRQ_HANDLED; } } /* Drain rx fifo, Fill tx fifo and prevent overruns */ do { if (drv_data->read(drv_data)) { pxa2xx_spi_dma_transfer_complete(drv_data, false); return IRQ_HANDLED; } } while (drv_data->write(drv_data)); if (drv_data->read(drv_data)) { pxa2xx_spi_dma_transfer_complete(drv_data, false); return IRQ_HANDLED; } return IRQ_HANDLED; } int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst) { const struct chip_data *chip = drv_data->cur_chip; void *lpss_dma = drv_data->dma_priv; enum lpss_dma_buswidth width; enum lpss_dma_msize burstsize; u32 trail_bytes; switch (drv_data->n_bytes) { case 1: width = LPSS_DMA_BUSWIDTH_1_BYTE; break; case 2: width = LPSS_DMA_BUSWIDTH_2_BYTES; break; case 4: default: width = LPSS_DMA_BUSWIDTH_4_BYTES; break; } switch (dma_burst) { case 8: burstsize = LPSS_DMA_MSIZE_8; break; case 16: default: burstsize = LPSS_DMA_MSIZE_16; break; } trail_bytes = drv_data->len % (chip->dma_burst_size * drv_data->n_bytes); drv_data->tx_map_len = drv_data->rx_map_len = drv_data->len - trail_bytes; lpss_dma_set_buswidth(lpss_dma, width); lpss_dma_set_burstsize(lpss_dma, burstsize); return 0; } void pxa2xx_spi_dma_start(struct driver_data *drv_data) { void *lpss_dma = drv_data->dma_priv; lpss_dma_start_tx(lpss_dma, drv_data->tx, drv_data->tx_map_len); lpss_dma_start_rx(lpss_dma, drv_data->rx, drv_data->rx_map_len); atomic_set(&drv_data->dma_running, 1); } static struct lpss_dma_info pxa2xx_dma_info = { .dma_buswidth = LPSS_DMA_BUSWIDTH_1_BYTE, .dma_burstsize = LPSS_DMA_MSIZE_8, .rx_callback = pxa2xx_spi_dma_callback, }; #define LPSS_IDMA_OFFSET 0x800 int pxa2xx_spi_dma_setup(struct driver_data *drv_data) { struct ssp_device *ssp = drv_data->ssp; struct lpss_dma_info *dma_info = &pxa2xx_dma_info; int ret; drv_data->dummy = lpss_dma_alloc(SZ_4K); if (!drv_data->dummy) return -ENOMEM; /* setup lpss dma */ dma_info->pdev = &drv_data->pdev->dev; dma_info->membase = drv_data->ioaddr + LPSS_IDMA_OFFSET; dma_info->irq = ssp->irq; snprintf(dma_info->name, sizeof(dma_info->name) - 1, "%s_%d", "pxa2xx-spi", ssp->port_id); dma_info->per_tx_addr = dma_info->per_rx_addr = drv_data->ssdr_physical; dma_info->callback_param = drv_data; /* get baytrail or cherrytrail lpss dma info */ ret = lpss_get_controller_info(lpss_spi_dma, ssp->port_id - 1, dma_info); if (ret < 0) goto err; drv_data->dma_priv = lpss_dma_register(dma_info); if (!drv_data->dma_priv) { ret = -ENODEV; goto err; } return 0; err: lpss_dma_free(drv_data->dummy); return ret; } void pxa2xx_spi_dma_release(struct driver_data *drv_data) { void *lpss_dma = drv_data->dma_priv; lpss_dma_free(drv_data->dummy); lpss_dma_unregister(lpss_dma); } void pxa2xx_spi_dma_suspend(struct driver_data *drv_data) { } void pxa2xx_spi_dma_resume(struct driver_data *drv_data) { } int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip, struct spi_device *spi, u8 bits_per_word, u32 *burst_code, u32 *threshold) { struct pxa2xx_spi_chip *chip_info = spi->controller_data; /* * If the DMA burst size is given in chip_info we use that, * otherwise we use the default. Also we use the default FIFO * thresholds for now. */ *burst_code = chip_info ? chip_info->dma_burst_size : 8; *threshold = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT); chip->lpss_rx_threshold = SSIRF_RxThresh(*burst_code); return 0; }