android_kernel_lenovo_1050f/drivers/idle/intel_idle.c

1290 lines
34 KiB
C

/*
* intel_idle.c - native hardware idle loop for modern Intel processors
*
* Copyright (c) 2010, Intel Corporation.
* Len Brown <len.brown@intel.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
* intel_idle is a cpuidle driver that loads on specific Intel processors
* in lieu of the legacy ACPI processor_idle driver. The intent is to
* make Linux more efficient on these processors, as intel_idle knows
* more than ACPI, as well as make Linux more immune to ACPI BIOS bugs.
*/
/*
* Design Assumptions
*
* All CPUs have same idle states as boot CPU
*
* Chipset BM_STS (bus master status) bit is a NOP
* for preventing entry into deep C-stats
*/
/*
* Known limitations
*
* The driver currently initializes for_each_online_cpu() upon modprobe.
* It it unaware of subsequent processors hot-added to the system.
* This means that if you boot with maxcpus=n and later online
* processors above n, those processors will use C1 only.
*
* ACPI has a .suspend hack to turn off deep c-statees during suspend
* to avoid complications with the lapic timer workaround.
* Have not seen issues with suspend, but may need same workaround here.
*
* There is currently no kernel-based automatic probing/loading mechanism
* if the driver is built as a module.
*/
/* un-comment DEBUG to enable pr_debug() statements */
#define DEBUG
#include <linux/kernel.h>
#include <linux/cpuidle.h>
#include <linux/clockchips.h>
#include <trace/events/power.h>
#include <linux/sched.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/intel_mid_pm.h>
#include <linux/pm_qos.h>
#include <asm/cpu_device_id.h>
#include <asm/mwait.h>
#include <asm/msr.h>
#include <asm/io_apic.h>
#include <asm/hypervisor.h>
#include <asm/xen/hypercall.h>
#define INTEL_IDLE_VERSION "0.4"
#define PREFIX "intel_idle: "
#define CLPU_CR_C6_POLICY_CONFIG 0x668
#define CLPU_MD_C6_POLICY_CONFIG 0x669
#define DISABLE_CORE_C6_DEMOTION 0x0
#define DISABLE_MODULE_C6_DEMOTION 0x0
#ifdef CONFIG_MOOREFIELD
#define S0I1_DISPLAY_MODE (1 << 8)
#define PUNIT_PORT 0x04
#define DSP_SS_PM 0x36
#define S0i1_LATENCY 1200
#define LOW_LATENCY_S0I1 1000
#define S0I1_STATE 0x60
#endif
static struct cpuidle_driver intel_idle_driver = {
.name = "intel_idle",
.owner = THIS_MODULE,
};
/* intel_idle.max_cstate=0 disables driver */
static int max_cstate = CPUIDLE_STATE_MAX - 1;
static unsigned int mwait_substates;
#define LAPIC_TIMER_ALWAYS_RELIABLE 0xFFFFFFFF
/* Reliable LAPIC Timer States, bit 1 for C1 etc. */
static unsigned int lapic_timer_reliable_states = (1 << 1); /* Default to only C1 */
#if defined(CONFIG_REMOVEME_INTEL_ATOM_MDFLD_POWER) || \
defined(CONFIG_REMOVEME_INTEL_ATOM_CLV_POWER)
static int soc_s0ix_idle(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index);
static atomic_t nr_cpus_in_c6;
#endif
struct idle_cpu {
struct cpuidle_state *state_table;
/*
* Hardware C-state auto-demotion may not always be optimal.
* Indicate which enable bits to clear here.
*/
unsigned long auto_demotion_disable_flags;
bool disable_promotion_to_c1e;
};
static const struct idle_cpu *icpu;
static struct cpuidle_device __percpu *intel_idle_cpuidle_devices;
static int intel_idle(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index);
static int intel_idle_cpu_init(int cpu);
static struct cpuidle_state *cpuidle_state_table;
/*
* Set this flag for states where the HW flushes the TLB for us
* and so we don't need cross-calls to keep it consistent.
* If this flag is set, SW flushes the TLB, so even if the
* HW doesn't do the flushing, this flag is safe to use.
*/
#define CPUIDLE_FLAG_TLB_FLUSHED 0x10000
/*
* MWAIT takes an 8-bit "hint" in EAX "suggesting"
* the C-state (top nibble) and sub-state (bottom nibble)
* 0x00 means "MWAIT(C1)", 0x10 means "MWAIT(C2)" etc.
*
* We store the hint at the top of our "flags" for each state.
*/
#define flg2MWAIT(flags) (((flags) >> 24) & 0xFF)
#define MWAIT2flg(eax) ((eax & 0xFF) << 24)
/*
* States are indexed by the cstate number,
* which is also the index into the MWAIT hint array.
* Thus C0 is a dummy.
*/
static struct cpuidle_state nehalem_cstates[CPUIDLE_STATE_MAX] = {
{
.name = "C1-NHM",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = 3,
.target_residency = 6,
.enter = &intel_idle },
{
.name = "C1E-NHM",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle },
{
.name = "C3-NHM",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 20,
.target_residency = 80,
.enter = &intel_idle },
{
.name = "C6-NHM",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 200,
.target_residency = 800,
.enter = &intel_idle },
{
.enter = NULL }
};
static struct cpuidle_state snb_cstates[CPUIDLE_STATE_MAX] = {
{
.name = "C1-SNB",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle },
{
.name = "C1E-SNB",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle },
{
.name = "C3-SNB",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 80,
.target_residency = 211,
.enter = &intel_idle },
{
.name = "C6-SNB",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 104,
.target_residency = 345,
.enter = &intel_idle },
{
.name = "C7-SNB",
.desc = "MWAIT 0x30",
.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 109,
.target_residency = 345,
.enter = &intel_idle },
{
.enter = NULL }
};
static struct cpuidle_state ivb_cstates[CPUIDLE_STATE_MAX] = {
{
.name = "C1-IVB",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = 1,
.target_residency = 1,
.enter = &intel_idle },
{
.name = "C1E-IVB",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle },
{
.name = "C3-IVB",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 59,
.target_residency = 156,
.enter = &intel_idle },
{
.name = "C6-IVB",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 80,
.target_residency = 300,
.enter = &intel_idle },
{
.name = "C7-IVB",
.desc = "MWAIT 0x30",
.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 87,
.target_residency = 300,
.enter = &intel_idle },
{
.enter = NULL }
};
static struct cpuidle_state hsw_cstates[CPUIDLE_STATE_MAX] = {
{
.name = "C1-HSW",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = 2,
.target_residency = 2,
.enter = &intel_idle },
{
.name = "C1E-HSW",
.desc = "MWAIT 0x01",
.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle },
{
.name = "C3-HSW",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 33,
.target_residency = 100,
.enter = &intel_idle },
{
.name = "C6-HSW",
.desc = "MWAIT 0x20",
.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 133,
.target_residency = 400,
.enter = &intel_idle },
{
.name = "C7s-HSW",
.desc = "MWAIT 0x32",
.flags = MWAIT2flg(0x32) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 166,
.target_residency = 500,
.enter = &intel_idle },
{
.name = "C8-HSW",
.desc = "MWAIT 0x40",
.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 300,
.target_residency = 900,
.enter = &intel_idle },
{
.name = "C9-HSW",
.desc = "MWAIT 0x50",
.flags = MWAIT2flg(0x50) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 600,
.target_residency = 1800,
.enter = &intel_idle },
{
.name = "C10-HSW",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 2600,
.target_residency = 7700,
.enter = &intel_idle },
{
.enter = NULL }
};
static struct cpuidle_state atom_cstates[CPUIDLE_STATE_MAX] = {
{
.name = "C1E-ATM",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = 10,
.target_residency = 20,
.enter = &intel_idle },
{
.name = "C2-ATM",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = 20,
.target_residency = 80,
.enter = &intel_idle },
{
.name = "C4-ATM",
.desc = "MWAIT 0x30",
.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 100,
.target_residency = 400,
.enter = &intel_idle },
{
.name = "C6-ATM",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 140,
.target_residency = 560,
.enter = &intel_idle },
{
.enter = NULL }
};
static struct cpuidle_state vlv_cstates[CPUIDLE_STATE_MAX] = {
{ /* MWAIT C1 */
.name = "C1-ATM",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = 1,
.target_residency = 4,
.enter = &intel_idle },
{ /* MWAIT C4 */
.name = "C4-ATM",
.desc = "MWAIT 0x30",
.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 100,
.target_residency = 400,
.enter = &intel_idle },
{ /* MWAIT C6 */
.name = "C6-ATM",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 140,
.target_residency = 560,
.enter = &intel_idle },
{ /* MWAIT C7-S0i1 */
.name = "S0i1-ATM",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 1200,
.target_residency = 4000,
.enter = &intel_idle },
{ /* MWAIT C9-S0i3 */
.name = "S0i3-ATM",
.desc = "MWAIT 0x64",
.flags = MWAIT2flg(0x64) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 10000,
.target_residency = 20000,
.enter = &intel_idle },
{
.enter = NULL }
};
static struct cpuidle_state chv_cstates[CPUIDLE_STATE_MAX] = {
{ /* MWAIT C1 */
.name = "C1-ATM",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = 1,
.target_residency = 4,
.enter = &intel_idle },
{ /* MWAIT C4 */
.name = "C4-ATM",
.desc = "MWAIT 0x30",
.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TIME_VALID
| CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 100,
.target_residency = 400,
.enter = &intel_idle },
{ /* MWAIT C6 */
.name = "C6-ATM",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TIME_VALID
| CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 140,
.target_residency = 560,
.enter = &intel_idle },
{ /* MWAIT C7-S0i1 */
.name = "S0i1-ATM",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TIME_VALID
| CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 1200,
.target_residency = 4000,
.enter = &intel_idle },
{ /* MWAIT C8-S0i2 */
.name = "S0i2-ATM",
.desc = "MWAIT 0x62",
.flags = MWAIT2flg(0x62) | CPUIDLE_FLAG_TIME_VALID
| CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 2000,
.target_residency = 8000,
.enter = &intel_idle },
{ /* MWAIT C9-S0i3 */
.name = "S0i3-ATM",
.desc = "MWAIT 0x64",
.flags = MWAIT2flg(0x64) | CPUIDLE_FLAG_TIME_VALID
| CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 10000,
.target_residency = 20000,
.enter = &intel_idle },
{
.enter = NULL }
};
#if defined(CONFIG_REMOVEME_INTEL_ATOM_MRFLD_POWER)
static struct cpuidle_state mrfld_cstates[CPUIDLE_STATE_MAX] = {
{ /* MWAIT C1 */
.name = "C1-ATM",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = 1,
.target_residency = 4,
.enter = &intel_idle },
{ /* MWAIT C4 */
.name = "C4-ATM",
.desc = "MWAIT 0x30",
.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 100,
.target_residency = 400,
.enter = &intel_idle },
{ /* MWAIT C6 */
.name = "C6-ATM",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 140,
.target_residency = 560,
.enter = &intel_idle },
{ /* MWAIT C7-S0i1 */
.name = "S0i1-ATM",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 1200,
.target_residency = 4000,
.enter = &intel_idle },
{ /* MWAIT C9-S0i3 */
.name = "S0i3-ATM",
.desc = "MWAIT 0x64",
.flags = MWAIT2flg(0x64) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 10000,
.target_residency = 20000,
.enter = &intel_idle },
{
.enter = NULL }
};
#else
#define mrfld_cstates atom_cstates
#endif
static struct cpuidle_state moorfld_cstates[CPUIDLE_STATE_MAX] = {
{ /* MWAIT C1 */
.name = "C1-ATM",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = 1,
.target_residency = 4,
.enter = &intel_idle },
{ /* MWAIT C6 */
.name = "C6-ATM",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TIME_VALID
| CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 140,
.target_residency = 560,
.enter = &intel_idle },
{ /* MWAIT C7-S0i1 */
.name = "S0i1-ATM",
.desc = "MWAIT 0x60",
.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TIME_VALID
| CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 1200,
.target_residency = 4000,
.enter = &intel_idle },
{ /* MWAIT C9-S0i3 */
.name = "S0i3-ATM",
.desc = "MWAIT 0x64",
.flags = MWAIT2flg(0x64) | CPUIDLE_FLAG_TIME_VALID
| CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = 10000,
.target_residency = 20000,
.enter = &intel_idle },
{
.enter = NULL }
};
#if defined(CONFIG_REMOVEME_INTEL_ATOM_MDFLD_POWER) || \
defined(CONFIG_REMOVEME_INTEL_ATOM_CLV_POWER)
static struct cpuidle_state mfld_cstates[CPUIDLE_STATE_MAX] = {
{ /* MWAIT C1 */
.name = "ATM-C1",
.desc = "MWAIT 0x00",
.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = CSTATE_EXIT_LATENCY_C1,
.target_residency = 4,
.enter = &intel_idle },
{ /* MWAIT C2 */
.name = "ATM-C2",
.desc = "MWAIT 0x10",
.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TIME_VALID,
.exit_latency = CSTATE_EXIT_LATENCY_C2,
.target_residency = 80,
.enter = &intel_idle },
{ /* MWAIT C4 */
.name = "ATM-C4",
.desc = "MWAIT 0x30",
.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = CSTATE_EXIT_LATENCY_C4,
.target_residency = 400,
.enter = &intel_idle },
{ /* MWAIT C6 */
.name = "ATM-C6",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = CSTATE_EXIT_LATENCY_C6,
.power_usage = C6_POWER_USAGE,
.target_residency = 560,
.enter = &soc_s0ix_idle },
{
.name = "ATM-S0i1",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x1) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = CSTATE_EXIT_LATENCY_S0i1,
.power_usage = S0I1_POWER_USAGE,
.enter = &soc_s0ix_idle },
{
.name = "ATM-LpAudio",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x3) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = CSTATE_EXIT_LATENCY_LPMP3,
.power_usage = LPMP3_POWER_USAGE,
.enter = &soc_s0ix_idle },
{
.name = "ATM-S0i3",
.desc = "MWAIT 0x52",
.flags = MWAIT2flg(0x7) | CPUIDLE_FLAG_TIME_VALID | CPUIDLE_FLAG_TLB_FLUSHED,
.exit_latency = CSTATE_EXIT_LATENCY_S0i3,
.power_usage = S0I3_POWER_USAGE,
.enter = &soc_s0ix_idle },
{
.enter = NULL }
};
static inline bool is_irq_pending(void)
{
int i, base = APIC_IRR;
for (i = 0; i < 8; i++)
if (apic_read(base + i*0x10) != 0)
return true;
return false;
}
static int enter_s0ix_state(u32 eax, int gov_req_state, int s0ix_state,
struct cpuidle_device *dev, int index)
{
int s0ix_entered = 0;
int selected_state = C6_STATE_IDX;
if (atomic_add_return(1, &nr_cpus_in_c6) == num_online_cpus() &&
s0ix_state) {
s0ix_entered = mid_s0ix_enter(s0ix_state);
if (!s0ix_entered) {
if (pmu_is_s0ix_in_progress()) {
atomic_dec(&nr_cpus_in_c6);
eax = C4_HINT;
}
pmu_set_s0ix_complete();
}
}
switch (s0ix_state) {
case MID_S0I1_STATE:
trace_cpu_idle(S0I1_STATE_IDX, dev->cpu);
break;
case MID_LPMP3_STATE:
trace_cpu_idle(LPMP3_STATE_IDX, dev->cpu);
break;
case MID_S0I3_STATE:
trace_cpu_idle(S0I3_STATE_IDX, dev->cpu);
break;
case MID_S3_STATE:
trace_cpu_idle(S0I3_STATE_IDX, dev->cpu);
break;
default:
trace_cpu_idle((eax >> 4) + 1, dev->cpu);
}
#ifdef CONFIG_XEN
HYPERVISOR_monitor_op((void *)&current_thread_info()->flags, 0, 0);
#else
__monitor((void *)&current_thread_info()->flags, 0, 0);
#endif
smp_mb();
if (!need_resched()) {
#ifdef CONFIG_XEN
HYPERVISOR_mwait_op(eax, 1,
(void *)&current_thread_info()->flags,
0);
#else
__mwait(eax, 1);
#endif
}
if (!need_resched() && is_irq_pending() == 0)
__get_cpu_var(update_buckets) = 0;
if (likely(eax == C6_HINT))
atomic_dec(&nr_cpus_in_c6);
/* During s0ix exit inform scu that OS
* has exited. In case scu is still waiting
* for ack c6 trigger, it would exit out
* of the ack-c6 timeout loop
*/
pmu_set_s0ix_complete();
/* In case of demotion to S0i1/lpmp3 update last_state */
if (s0ix_entered) {
selected_state = S0I3_STATE_IDX;
if (s0ix_state == MID_S0I1_STATE) {
index = S0I1_STATE_IDX;
selected_state = S0I1_STATE_IDX;
} else if (s0ix_state == MID_LPMP3_STATE) {
index = LPMP3_STATE_IDX;
selected_state = LPMP3_STATE_IDX;
}
} else if (eax == C4_HINT) {
index = C4_STATE_IDX;
selected_state = C4_STATE_IDX;
} else
index = C6_STATE_IDX;
pmu_s0ix_demotion_stat(gov_req_state, selected_state);
return index;
}
static int soc_s0ix_idle(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index)
{
struct cpuidle_state *state = &drv->states[index];
unsigned long eax = flg2MWAIT(state->flags);
int cpu = smp_processor_id();
int s0ix_state = 0;
unsigned int cstate;
int gov_req_state = (int) eax;
/* Check if s0ix is already in progress,
* This is required to demote C6 while S0ix
* is in progress
*/
if (unlikely(pmu_is_s0ix_in_progress()))
return intel_idle(dev, drv, C4_STATE_IDX);
/* check if we need/possible to do s0ix */
if (eax != C6_HINT)
s0ix_state = get_target_platform_state(&eax);
/*
* leave_mm() to avoid costly and often unnecessary wakeups
* for flushing the user TLB's associated with the active mm.
*/
if (state->flags & CPUIDLE_FLAG_TLB_FLUSHED)
leave_mm(cpu);
cstate = (((eax) >> MWAIT_SUBSTATE_SIZE) & MWAIT_CSTATE_MASK) + 1;
if (!(lapic_timer_reliable_states & (1 << (cstate))))
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
stop_critical_timings();
if (!need_resched())
index = enter_s0ix_state(eax, gov_req_state,
s0ix_state, dev, index);
start_critical_timings();
if (!(lapic_timer_reliable_states & (1 << (cstate))))
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
return index;
}
#else
#define mfld_cstates atom_cstates
#endif
#ifdef CONFIG_ATOM_SOC_POWER
static unsigned int get_target_residency(unsigned int cstate)
{
unsigned int t_sleep = cpuidle_state_table[cstate].target_residency;
unsigned int prev_idx;
/* get the previous lower sleep state */
if ((cstate == 5) || (cstate == 6))
prev_idx = cstate - 2;
else
prev_idx = cstate - 1;
/* calculate target_residency only if not defined already */
if (!t_sleep) {
/* Use C0 power usage to calculate the target residency */
unsigned int p_active = C0_POWER_USAGE;
unsigned int prev_state_power = cpuidle_state_table
[prev_idx].power_usage;
unsigned int curr_state_power = cpuidle_state_table
[cstate].power_usage;
unsigned int prev_state_lat = cpuidle_state_table
[prev_idx].exit_latency;
unsigned int curr_state_lat = cpuidle_state_table
[cstate].exit_latency;
if (curr_state_power && prev_state_power && p_active &&
prev_state_lat && curr_state_lat &&
(curr_state_lat > prev_state_lat) &&
(prev_state_power > curr_state_power)) {
t_sleep = ((p_active * (curr_state_lat - prev_state_lat))
+ (prev_state_lat * prev_state_power)
- (curr_state_lat * curr_state_power)) /
(prev_state_power - curr_state_power);
/* round-up target_residency */
t_sleep++;
}
}
WARN_ON(!t_sleep);
pr_debug(PREFIX "cpuidle: target_residency[%d]= %d\n", cstate, t_sleep);
return t_sleep;
}
#endif
#ifdef CONFIG_MOOREFIELD
/* MOFD: Optimize special variants of S0i1 where low residency is sufficient */
int low_latency_s0ix_state(int eax)
{
u32 dsp_ss_pm_val;
dsp_ss_pm_val = intel_mid_msgbus_read32(PUNIT_PORT, DSP_SS_PM);
if (dsp_ss_pm_val & S0I1_DISPLAY_MODE)
eax = S0I1_STATE;
return eax;
}
#endif
/**
* intel_idle
* @dev: cpuidle_device
* @drv: cpuidle driver
* @index: index of cpuidle state
*
* Must be called under local_irq_disable().
*/
static int intel_idle(struct cpuidle_device *dev,
struct cpuidle_driver *drv, int index)
{
unsigned long ecx = 1; /* break on interrupt flag */
struct cpuidle_state *state = &drv->states[index];
unsigned long eax = flg2MWAIT(state->flags);
unsigned int cstate;
int cpu = smp_processor_id();
#ifdef CONFIG_MOOREFIELD
int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
#endif
#if (defined(CONFIG_REMOVEME_INTEL_ATOM_MRFLD_POWER) && \
defined(CONFIG_PM_DEBUG))
{
/* Get Cstate based on ignore table from PMU driver */
unsigned int ncstate;
cstate =
(((eax) >> MWAIT_SUBSTATE_SIZE) & MWAIT_CSTATE_MASK) + 1;
ncstate = pmu_get_new_cstate(cstate, &index);
eax = flg2MWAIT(drv->states[index].flags);
}
#endif
cstate = (((eax) >> MWAIT_SUBSTATE_SIZE) & MWAIT_CSTATE_MASK) + 1;
/*
* leave_mm() to avoid costly and often unnecessary wakeups
* for flushing the user TLB's associated with the active mm.
*/
if (state->flags & CPUIDLE_FLAG_TLB_FLUSHED)
leave_mm(cpu);
if (!(lapic_timer_reliable_states & (1 << (cstate))))
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
if (!need_resched()) {
#ifdef CONFIG_XEN
HYPERVISOR_mwait_op(eax, ecx,
(void *)&current_thread_info()->flags,
0);
#else
#ifdef CONFIG_MOOREFIELD
if (eax >= C6_HINT && latency_req > S0i1_LATENCY
&& per_cpu(predicted_time, cpu) > LOW_LATENCY_S0I1)
eax = low_latency_s0ix_state(eax);
#endif
__monitor((void *)&current_thread_info()->flags, 0, 0);
smp_mb();
if (!need_resched())
__mwait(eax, ecx);
#if defined(CONFIG_REMOVEME_INTEL_ATOM_MDFLD_POWER) || \
defined(CONFIG_REMOVEME_INTEL_ATOM_CLV_POWER)
if (!need_resched() && is_irq_pending() == 0)
__get_cpu_var(update_buckets) = 0;
#endif
#endif /* CONFIG_XEN */
}
if (!(lapic_timer_reliable_states & (1 << (cstate))))
clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
return index;
}
static void __setup_broadcast_timer(void *arg)
{
unsigned long reason = (unsigned long)arg;
int cpu = smp_processor_id();
reason = reason ?
CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
clockevents_notify(reason, &cpu);
}
static int cpu_hotplug_notify(struct notifier_block *n,
unsigned long action, void *hcpu)
{
int hotcpu = (unsigned long)hcpu;
struct cpuidle_device *dev;
switch (action & 0xf) {
case CPU_ONLINE:
if (lapic_timer_reliable_states != LAPIC_TIMER_ALWAYS_RELIABLE)
smp_call_function_single(hotcpu, __setup_broadcast_timer,
(void *)true, 1);
/*
* Some systems can hotplug a cpu at runtime after
* the kernel has booted, we have to initialize the
* driver in this case
*/
dev = per_cpu_ptr(intel_idle_cpuidle_devices, hotcpu);
if (!dev->registered)
intel_idle_cpu_init(hotcpu);
break;
}
return NOTIFY_OK;
}
static struct notifier_block cpu_hotplug_notifier = {
.notifier_call = cpu_hotplug_notify,
};
static void auto_demotion_disable(void *dummy)
{
unsigned long long msr_bits;
rdmsrl(MSR_NHM_SNB_PKG_CST_CFG_CTL, msr_bits);
msr_bits &= ~(icpu->auto_demotion_disable_flags);
wrmsrl(MSR_NHM_SNB_PKG_CST_CFG_CTL, msr_bits);
}
static void c1e_promotion_disable(void *dummy)
{
unsigned long long msr_bits;
rdmsrl(MSR_IA32_POWER_CTL, msr_bits);
msr_bits &= ~0x2;
wrmsrl(MSR_IA32_POWER_CTL, msr_bits);
}
static const struct idle_cpu idle_cpu_nehalem = {
.state_table = nehalem_cstates,
.auto_demotion_disable_flags = NHM_C1_AUTO_DEMOTE | NHM_C3_AUTO_DEMOTE,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_atom = {
.state_table = atom_cstates,
};
static const struct idle_cpu idle_cpu_lincroft = {
.state_table = atom_cstates,
.auto_demotion_disable_flags = ATM_LNC_C6_AUTO_DEMOTE,
};
static const struct idle_cpu idle_cpu_snb = {
.state_table = snb_cstates,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_ivb = {
.state_table = ivb_cstates,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_hsw = {
.state_table = hsw_cstates,
.disable_promotion_to_c1e = true,
};
static const struct idle_cpu idle_cpu_mfld = {
.state_table = mfld_cstates,
.auto_demotion_disable_flags = ATM_LNC_C6_AUTO_DEMOTE,
};
static const struct idle_cpu idle_cpu_mrfld = {
.state_table = mrfld_cstates,
};
static const struct idle_cpu idle_cpu_vlv = {
.state_table = vlv_cstates,
};
static const struct idle_cpu idle_cpu_moorfld = {
.state_table = moorfld_cstates,
};
static const struct idle_cpu idle_cpu_chv = {
.state_table = chv_cstates,
};
#define ICPU(model, cpu) \
{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_MWAIT, (unsigned long)&cpu }
static const struct x86_cpu_id intel_idle_ids[] = {
ICPU(0x1a, idle_cpu_nehalem),
ICPU(0x1e, idle_cpu_nehalem),
ICPU(0x1f, idle_cpu_nehalem),
ICPU(0x25, idle_cpu_nehalem),
ICPU(0x2c, idle_cpu_nehalem),
ICPU(0x2e, idle_cpu_nehalem),
ICPU(0x1c, idle_cpu_atom),
ICPU(0x26, idle_cpu_lincroft),
ICPU(0x2f, idle_cpu_nehalem),
ICPU(0x2a, idle_cpu_snb),
ICPU(0x2d, idle_cpu_snb),
ICPU(0x4c, idle_cpu_chv),
ICPU(0x37, idle_cpu_vlv),
ICPU(0x3a, idle_cpu_ivb),
ICPU(0x3e, idle_cpu_ivb),
ICPU(0x3c, idle_cpu_hsw),
ICPU(0x3f, idle_cpu_hsw),
ICPU(0x45, idle_cpu_hsw),
ICPU(0x46, idle_cpu_hsw),
ICPU(0x27, idle_cpu_mfld),
ICPU(0x35, idle_cpu_mfld),
ICPU(0x4a, idle_cpu_mrfld), /* Tangier SoC */
ICPU(0x5a, idle_cpu_moorfld), /* Anniedale SoC */
{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_idle_ids);
/*
* intel_idle_probe()
*/
static int intel_idle_probe(void)
{
unsigned int eax, ebx, ecx;
const struct x86_cpu_id *id;
if (max_cstate == 0) {
pr_debug(PREFIX "disabled\n");
return -EPERM;
}
id = x86_match_cpu(intel_idle_ids);
if (!id) {
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
boot_cpu_data.x86 == 6)
pr_debug(PREFIX "does not run on family %d model %d\n",
boot_cpu_data.x86, boot_cpu_data.x86_model);
return -ENODEV;
}
if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
return -ENODEV;
cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &mwait_substates);
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
!(ecx & CPUID5_ECX_INTERRUPT_BREAK) ||
!mwait_substates)
return -ENODEV;
pr_debug(PREFIX "MWAIT substates: 0x%x\n", mwait_substates);
icpu = (const struct idle_cpu *)id->driver_data;
cpuidle_state_table = icpu->state_table;
if (boot_cpu_has(X86_FEATURE_ARAT)) /* Always Reliable APIC Timer */
lapic_timer_reliable_states = LAPIC_TIMER_ALWAYS_RELIABLE;
else
on_each_cpu(__setup_broadcast_timer, (void *)true, 1);
pr_debug(PREFIX "v" INTEL_IDLE_VERSION
" model 0x%X\n", boot_cpu_data.x86_model);
pr_debug(PREFIX "lapic_timer_reliable_states 0x%x\n",
lapic_timer_reliable_states);
return 0;
}
/*
* intel_idle_cpuidle_devices_uninit()
* unregister, free cpuidle_devices
*/
static void intel_idle_cpuidle_devices_uninit(void)
{
int i;
struct cpuidle_device *dev;
for_each_online_cpu(i) {
dev = per_cpu_ptr(intel_idle_cpuidle_devices, i);
cpuidle_unregister_device(dev);
}
free_percpu(intel_idle_cpuidle_devices);
return;
}
/*
* intel_idle_cpuidle_driver_init()
* allocate, initialize cpuidle_states
*/
static int intel_idle_cpuidle_driver_init(void)
{
int cstate;
struct cpuidle_driver *drv = &intel_idle_driver;
drv->state_count = 1;
for (cstate = 0; cstate < CPUIDLE_STATE_MAX; ++cstate) {
int num_substates = 0, mwait_hint, mwait_cstate, mwait_substate;
if (cpuidle_state_table[cstate].enter == NULL)
break;
if (cstate + 1 > max_cstate) {
printk(PREFIX "max_cstate %d reached\n",
max_cstate);
break;
}
mwait_hint = flg2MWAIT(cpuidle_state_table[cstate].flags);
mwait_cstate = MWAIT_HINT2CSTATE(mwait_hint);
mwait_substate = MWAIT_HINT2SUBSTATE(mwait_hint);
/* does the state exist in CPUID.MWAIT? */
/* FIXME: Do not check number of substates for any states above C6
* as these are not real C states supported by the CPU, they
* are emulated c states for s0ix support.
*/
if ((mwait_cstate + 1) <= 6) {
num_substates = (mwait_substates >> ((mwait_cstate + 1) * 4))
& MWAIT_SUBSTATE_MASK;
if (num_substates == 0)
continue;
}
#if !defined(CONFIG_ATOM_SOC_POWER)
if ((boot_cpu_data.x86_model != 0x37) && (boot_cpu_data.x86_model != 0x4c)) {
/* if sub-state in table is not enumerated by CPUID */
if ((mwait_substate + 1) > num_substates)
continue;
}
#endif
if (((mwait_cstate + 1) > 2) &&
!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
mark_tsc_unstable("TSC halts in idle"
" states deeper than C2");
#ifdef CONFIG_ATOM_SOC_POWER
/* Calculate target_residency if power_usage is given */
cpuidle_state_table[cstate].target_residency =
get_target_residency(cstate);
#endif
drv->states[drv->state_count] = /* structure copy */
cpuidle_state_table[cstate];
drv->state_count += 1;
}
if (icpu->auto_demotion_disable_flags)
on_each_cpu(auto_demotion_disable, NULL, 1);
if (icpu->disable_promotion_to_c1e) /* each-cpu is redundant */
on_each_cpu(c1e_promotion_disable, NULL, 1);
return 0;
}
/*
* intel_idle_cpu_init()
* allocate, initialize, register cpuidle_devices
* @cpu: cpu/core to initialize
*/
static int intel_idle_cpu_init(int cpu)
{
int cstate;
struct cpuidle_device *dev;
dev = per_cpu_ptr(intel_idle_cpuidle_devices, cpu);
dev->state_count = 1;
for (cstate = 0; cstate < CPUIDLE_STATE_MAX; ++cstate) {
int num_substates = 0, mwait_hint, mwait_cstate, mwait_substate;
if (cpuidle_state_table[cstate].enter == NULL)
continue;
if (cstate + 1 > max_cstate) {
printk(PREFIX "max_cstate %d reached\n", max_cstate);
break;
}
mwait_hint = flg2MWAIT(cpuidle_state_table[cstate].flags);
mwait_cstate = MWAIT_HINT2CSTATE(mwait_hint);
mwait_substate = MWAIT_HINT2SUBSTATE(mwait_hint);
/* does the state exist in CPUID.MWAIT? */
/* FIXME: Do not check number of substates for any states above C6
* as these are not real C states supported by the CPU, they
* are emulated c states for s0ix support.
*/
if ((mwait_cstate + 1) <= 6) {
num_substates = (mwait_substates >> ((mwait_cstate + 1) * 4))
& MWAIT_SUBSTATE_MASK;
if (num_substates == 0)
continue;
}
#if !defined(CONFIG_ATOM_SOC_POWER)
if ((boot_cpu_data.x86_model != 0x37) && (boot_cpu_data.x86_model != 0x4c)) {
/* if sub-state in table is not enumerated by CPUID */
if ((mwait_substate + 1) > num_substates)
continue;
}
#endif
dev->state_count += 1;
}
dev->cpu = cpu;
if (cpuidle_register_device(dev)) {
pr_debug(PREFIX "cpuidle_register_device %d failed!\n", cpu);
intel_idle_cpuidle_devices_uninit();
return -EIO;
}
if (icpu->auto_demotion_disable_flags)
smp_call_function_single(cpu, auto_demotion_disable, NULL, 1);
per_cpu(update_buckets, cpu) = 1;
return 0;
}
static int __init intel_idle_init(void)
{
int retval, i;
/* Do not load intel_idle at all for now if idle= is passed */
if (boot_option_idle_override != IDLE_NO_OVERRIDE)
return -ENODEV;
retval = intel_idle_probe();
if (retval)
return retval;
intel_idle_cpuidle_driver_init();
retval = cpuidle_register_driver(&intel_idle_driver);
if (retval) {
struct cpuidle_driver *drv = cpuidle_get_driver();
printk(KERN_DEBUG PREFIX "intel_idle yielding to %s",
drv ? drv->name : "none");
return retval;
}
intel_idle_cpuidle_devices = alloc_percpu(struct cpuidle_device);
if (intel_idle_cpuidle_devices == NULL)
return -ENOMEM;
for_each_online_cpu(i) {
retval = intel_idle_cpu_init(i);
if (retval) {
cpuidle_unregister_driver(&intel_idle_driver);
return retval;
}
if (platform_is(INTEL_ATOM_BYT) || platform_is(INTEL_ATOM_CHT)) {
/* Disable automatic core C6 demotion by PUNIT */
if (wrmsr_on_cpu(i, CLPU_CR_C6_POLICY_CONFIG,
DISABLE_CORE_C6_DEMOTION, 0x0))
pr_err("Error to disable core C6 demotion");
/* Disable automatic module C6 demotion by PUNIT */
if (wrmsr_on_cpu(i, CLPU_MD_C6_POLICY_CONFIG,
DISABLE_MODULE_C6_DEMOTION, 0x0))
pr_err("Error to disable module C6 demotion");
}
}
register_cpu_notifier(&cpu_hotplug_notifier);
return 0;
}
static void __exit intel_idle_exit(void)
{
intel_idle_cpuidle_devices_uninit();
cpuidle_unregister_driver(&intel_idle_driver);
if (lapic_timer_reliable_states != LAPIC_TIMER_ALWAYS_RELIABLE)
on_each_cpu(__setup_broadcast_timer, (void *)false, 1);
unregister_cpu_notifier(&cpu_hotplug_notifier);
return;
}
module_init(intel_idle_init);
module_exit(intel_idle_exit);
module_param(max_cstate, int, 0444);
MODULE_AUTHOR("Len Brown <len.brown@intel.com>");
MODULE_DESCRIPTION("Cpuidle driver for Intel Hardware v" INTEL_IDLE_VERSION);
MODULE_LICENSE("GPL");