qmk_firmware/tmk_core/protocol/arm_atsam/main_arm_atsam.c
patrickmt 6e984a8b5e Update to arm_atsam wait and timer routines
Microsecond (us) delays are now handled by a busy wait loop according to MCU frequency. This replaces the system counter method which had an overhead of around 12us.
TC5 device and supporting routines removed as it was the old us delay counter.
wait_ms is now properly a macro to CLK_delay_ms.
wait_us is now properly a macro to CLK_delay_us.
Removed CLK_get_us as it has no use.
All calls to CLK_get_ms() have been replaced by timer_read64() with corrected typing.
All calls to CLK_delay_ms() have been replaced by wait_ms().
All calls to CLK_delay_us() have been replaced by wait_us() and timings verified or updated as needed after review on scope.
Corrected typing of variables using 64bit ms timer readings if needed.
2019-01-07 12:44:55 -08:00

341 lines
8.6 KiB
C

/*
Copyright 2018 Massdrop Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "samd51j18a.h"
#include "tmk_core/common/keyboard.h"
#include "report.h"
#include "host.h"
#include "host_driver.h"
#include "keycode_config.h"
#include <string.h>
#include "quantum.h"
//From protocol directory
#include "arm_atsam_protocol.h"
//From keyboard's directory
#include "config_led.h"
uint8_t g_usb_state = USB_FSMSTATUS_FSMSTATE_OFF_Val; //Saved USB state from hardware value to detect changes
void main_subtasks(void);
uint8_t keyboard_leds(void);
void send_keyboard(report_keyboard_t *report);
void send_mouse(report_mouse_t *report);
void send_system(uint16_t data);
void send_consumer(uint16_t data);
host_driver_t arm_atsam_driver = {
keyboard_leds,
send_keyboard,
send_mouse,
send_system,
send_consumer
};
uint8_t led_states;
uint8_t keyboard_leds(void)
{
#ifdef NKRO_ENABLE
if (keymap_config.nkro)
return udi_hid_nkro_report_set;
else
#endif //NKRO_ENABLE
return udi_hid_kbd_report_set;
}
void send_keyboard(report_keyboard_t *report)
{
uint32_t irqflags;
#ifdef NKRO_ENABLE
if (!keymap_config.nkro)
{
#endif //NKRO_ENABLE
while (udi_hid_kbd_b_report_trans_ongoing) { main_subtasks(); } //Run other tasks while waiting for USB to be free
irqflags = __get_PRIMASK();
__disable_irq();
__DMB();
memcpy(udi_hid_kbd_report, report->raw, UDI_HID_KBD_REPORT_SIZE);
udi_hid_kbd_b_report_valid = 1;
udi_hid_kbd_send_report();
__DMB();
__set_PRIMASK(irqflags);
#ifdef NKRO_ENABLE
}
else
{
while (udi_hid_nkro_b_report_trans_ongoing) { main_subtasks(); } //Run other tasks while waiting for USB to be free
irqflags = __get_PRIMASK();
__disable_irq();
__DMB();
memcpy(udi_hid_nkro_report, report->raw, UDI_HID_NKRO_REPORT_SIZE);
udi_hid_nkro_b_report_valid = 1;
udi_hid_nkro_send_report();
__DMB();
__set_PRIMASK(irqflags);
}
#endif //NKRO_ENABLE
}
void send_mouse(report_mouse_t *report)
{
#ifdef MOUSEKEY_ENABLE
uint32_t irqflags;
irqflags = __get_PRIMASK();
__disable_irq();
__DMB();
memcpy(udi_hid_mou_report, report, UDI_HID_MOU_REPORT_SIZE);
udi_hid_mou_b_report_valid = 1;
udi_hid_mou_send_report();
__DMB();
__set_PRIMASK(irqflags);
#endif //MOUSEKEY_ENABLE
}
void send_system(uint16_t data)
{
#ifdef EXTRAKEY_ENABLE
uint32_t irqflags;
irqflags = __get_PRIMASK();
__disable_irq();
__DMB();
udi_hid_exk_report.desc.report_id = REPORT_ID_SYSTEM;
if (data != 0) data = data - SYSTEM_POWER_DOWN + 1;
udi_hid_exk_report.desc.report_data = data;
udi_hid_exk_b_report_valid = 1;
udi_hid_exk_send_report();
__DMB();
__set_PRIMASK(irqflags);
#endif //EXTRAKEY_ENABLE
}
void send_consumer(uint16_t data)
{
#ifdef EXTRAKEY_ENABLE
uint32_t irqflags;
irqflags = __get_PRIMASK();
__disable_irq();
__DMB();
udi_hid_exk_report.desc.report_id = REPORT_ID_CONSUMER;
udi_hid_exk_report.desc.report_data = data;
udi_hid_exk_b_report_valid = 1;
udi_hid_exk_send_report();
__DMB();
__set_PRIMASK(irqflags);
#endif //EXTRAKEY_ENABLE
}
void main_subtask_usb_state(void)
{
static uint64_t fsmstate_on_delay = 0; //Delay timer to be sure USB is actually operating before bringing up hardware
uint8_t fsmstate_now = USB->DEVICE.FSMSTATUS.reg; //Current state from hardware register
if (fsmstate_now == USB_FSMSTATUS_FSMSTATE_SUSPEND_Val) //If USB SUSPENDED
{
fsmstate_on_delay = 0; //Clear ON delay timer
if (g_usb_state != USB_FSMSTATUS_FSMSTATE_SUSPEND_Val) //If previously not SUSPENDED
{
suspend_power_down(); //Run suspend routine
g_usb_state = fsmstate_now; //Save current USB state
}
}
else if (fsmstate_now == USB_FSMSTATUS_FSMSTATE_SLEEP_Val) //Else if USB SLEEPING
{
fsmstate_on_delay = 0; //Clear ON delay timer
if (g_usb_state != USB_FSMSTATUS_FSMSTATE_SLEEP_Val) //If previously not SLEEPING
{
suspend_power_down(); //Run suspend routine
g_usb_state = fsmstate_now; //Save current USB state
}
}
else if (fsmstate_now == USB_FSMSTATUS_FSMSTATE_ON_Val) //Else if USB ON
{
if (g_usb_state != USB_FSMSTATUS_FSMSTATE_ON_Val) //If previously not ON
{
if (fsmstate_on_delay == 0) //If ON delay timer is cleared
{
fsmstate_on_delay = timer_read64() + 250; //Set ON delay timer
}
else if (timer_read64() > fsmstate_on_delay) //Else if ON delay timer is active and timed out
{
suspend_wakeup_init(); //Run wakeup routine
g_usb_state = fsmstate_now; //Save current USB state
}
}
}
else //Else if USB is in a state not being tracked
{
fsmstate_on_delay = 0; //Clear ON delay timer
}
}
void main_subtask_led(void)
{
if (g_usb_state != USB_FSMSTATUS_FSMSTATE_ON_Val) return; //Only run LED tasks if USB is operating
led_matrix_task();
}
void main_subtask_power_check(void)
{
static uint64_t next_5v_checkup = 0;
if (timer_read64() > next_5v_checkup)
{
next_5v_checkup = timer_read64() + 5;
v_5v = adc_get(ADC_5V);
v_5v_avg = 0.9 * v_5v_avg + 0.1 * v_5v;
gcr_compute();
}
}
void main_subtask_usb_extra_device(void)
{
static uint64_t next_usb_checkup = 0;
if (timer_read64() > next_usb_checkup)
{
next_usb_checkup = timer_read64() + 10;
USB_HandleExtraDevice();
}
}
void main_subtasks(void)
{
main_subtask_usb_state();
main_subtask_led();
main_subtask_power_check();
main_subtask_usb_extra_device();
}
int main(void)
{
DBG_LED_ENA;
DBG_1_ENA;
DBG_1_OFF;
DBG_2_ENA;
DBG_2_OFF;
DBG_3_ENA;
DBG_3_OFF;
debug_code_init();
CLK_init();
ADC0_init();
SR_EXP_Init();
i2c1_init();
matrix_init();
USB2422_init();
DBGC(DC_MAIN_UDC_START_BEGIN);
udc_start();
DBGC(DC_MAIN_UDC_START_COMPLETE);
DBGC(DC_MAIN_CDC_INIT_BEGIN);
CDC_init();
DBGC(DC_MAIN_CDC_INIT_COMPLETE);
while (USB2422_Port_Detect_Init() == 0) {}
DBG_LED_OFF;
led_matrix_init();
while (I2C3733_Init_Control() != 1) {}
while (I2C3733_Init_Drivers() != 1) {}
I2C_DMAC_LED_Init();
i2c_led_q_init();
for (uint8_t drvid = 0; drvid < ISSI3733_DRIVER_COUNT; drvid++)
I2C_LED_Q_ONOFF(drvid); //Queue data
keyboard_setup();
keyboard_init();
host_set_driver(&arm_atsam_driver);
#ifdef CONSOLE_ENABLE
uint64_t next_print = 0;
#endif //CONSOLE_ENABLE
v_5v_avg = adc_get(ADC_5V);
debug_code_disable();
while (1)
{
main_subtasks(); //Note these tasks will also be run while waiting for USB keyboard polling intervals
if (g_usb_state == USB_FSMSTATUS_FSMSTATE_SUSPEND_Val || g_usb_state == USB_FSMSTATUS_FSMSTATE_SLEEP_Val)
{
if (suspend_wakeup_condition())
{
udc_remotewakeup(); //Send remote wakeup signal
wait_ms(50);
}
continue;
}
keyboard_task();
#ifdef CONSOLE_ENABLE
if (timer_read64() > next_print)
{
next_print = timer_read64() + 250;
//Add any debug information here that you want to see very often
//dprintf("5v=%u 5vu=%u dlow=%u dhi=%u gca=%u gcd=%u\r\n", v_5v, v_5v_avg, v_5v_avg - V5_LOW, v_5v_avg - V5_HIGH, gcr_actual, gcr_desired);
}
#endif //CONSOLE_ENABLE
}
return 1;
}