android_kernel_lenovo_1050f/drivers/spi/spi-pxa2xx-lpssdma.c

283 lines
6.8 KiB
C

/*
* PXA2xx SPI LPSS DMA support.
*
* Copyright (C) 2014, Intel Corporation
* Author: Huiquan Zhong <huiquan.zhong@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/device.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/pxa2xx_ssp.h>
#include <linux/sizes.h>
#include <linux/spi/spi.h>
#include <linux/spi/pxa2xx_spi.h>
#include <linux/lpss_dma.h>
#include "spi-pxa2xx.h"
static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
bool error)
{
struct spi_message *msg = drv_data->cur_msg;
/*
* It is possible that one CPU is handling ROR interrupt and other
* just gets DMA completion. Calling pump_transfers() twice for the
* same transfer leads to problems thus we prevent concurrent calls
* by using ->dma_running.
*/
if (atomic_dec_and_test(&drv_data->dma_running)) {
void __iomem *reg = drv_data->ioaddr;
/*
* If the other CPU is still handling the ROR interrupt we
* might not know about the error yet. So we re-check the
* ROR bit here before we clear the status register.
*/
if (!error) {
u32 status = read_SSSR(reg) & drv_data->mask_sr;
error = status & SSSR_ROR;
}
/* Clear status & disable interrupts */
write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
write_SSSR_CS(drv_data, drv_data->clear_sr);
if (!pxa25x_ssp_comp(drv_data))
write_SSTO(0, reg);
if (!error) {
msg->actual_length += drv_data->len;
msg->state = pxa2xx_spi_next_transfer(drv_data);
} else {
/* In case we got an error we disable the SSP now */
write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
msg->state = ERROR_STATE;
}
tasklet_schedule(&drv_data->pump_transfers);
}
}
static void pxa2xx_spi_dma_callback(void *data)
{
struct driver_data *drv_data = data;
struct chip_data *chip = drv_data->cur_chip;
void __iomem *reg = drv_data->ioaddr;
u32 cr1;
drv_data->tx += drv_data->tx_map_len;
drv_data->rx += drv_data->rx_map_len;
/* use interrupt to poll the last bytes */
cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
write_SSCR1(cr1, reg);
}
bool pxa2xx_spi_dma_is_possible(size_t len)
{
return len <= MAX_DMA_LEN;
}
int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
{
const struct chip_data *chip = drv_data->cur_chip;
if (!chip->enable_dma)
return 0;
/* Don't bother with DMA if we can't do even a single burst */
if (drv_data->len < chip->dma_burst_size)
return 0;
if (!drv_data->tx) {
drv_data->tx = drv_data->dummy;
drv_data->tx_end = drv_data->tx + drv_data->len;
}
if (!drv_data->rx) {
drv_data->rx = drv_data->dummy;
drv_data->rx_end = drv_data->rx + drv_data->len;
}
return 1;
}
irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
{
void *lpss_dma = drv_data->dma_priv;
u32 status;
status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr;
if (status & SSSR_ROR) {
dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
lpss_dma_stop_tx(lpss_dma);
lpss_dma_stop_rx(lpss_dma);
pxa2xx_spi_dma_transfer_complete(drv_data, true);
return IRQ_HANDLED;
}
if (status & SSSR_TINT) {
write_SSSR(SSSR_TINT, drv_data->ioaddr);
if (drv_data->read(drv_data)) {
pxa2xx_spi_dma_transfer_complete(drv_data, false);
return IRQ_HANDLED;
}
}
/* Drain rx fifo, Fill tx fifo and prevent overruns */
do {
if (drv_data->read(drv_data)) {
pxa2xx_spi_dma_transfer_complete(drv_data, false);
return IRQ_HANDLED;
}
} while (drv_data->write(drv_data));
if (drv_data->read(drv_data)) {
pxa2xx_spi_dma_transfer_complete(drv_data, false);
return IRQ_HANDLED;
}
return IRQ_HANDLED;
}
int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
{
const struct chip_data *chip = drv_data->cur_chip;
void *lpss_dma = drv_data->dma_priv;
enum lpss_dma_buswidth width;
enum lpss_dma_msize burstsize;
u32 trail_bytes;
switch (drv_data->n_bytes) {
case 1:
width = LPSS_DMA_BUSWIDTH_1_BYTE;
break;
case 2:
width = LPSS_DMA_BUSWIDTH_2_BYTES;
break;
case 4:
default:
width = LPSS_DMA_BUSWIDTH_4_BYTES;
break;
}
switch (dma_burst) {
case 8:
burstsize = LPSS_DMA_MSIZE_8;
break;
case 16:
default:
burstsize = LPSS_DMA_MSIZE_16;
break;
}
trail_bytes = drv_data->len % (chip->dma_burst_size * drv_data->n_bytes);
drv_data->tx_map_len = drv_data->rx_map_len = drv_data->len - trail_bytes;
lpss_dma_set_buswidth(lpss_dma, width);
lpss_dma_set_burstsize(lpss_dma, burstsize);
return 0;
}
void pxa2xx_spi_dma_start(struct driver_data *drv_data)
{
void *lpss_dma = drv_data->dma_priv;
lpss_dma_start_tx(lpss_dma, drv_data->tx, drv_data->tx_map_len);
lpss_dma_start_rx(lpss_dma, drv_data->rx, drv_data->rx_map_len);
atomic_set(&drv_data->dma_running, 1);
}
static struct lpss_dma_info pxa2xx_dma_info = {
.dma_buswidth = LPSS_DMA_BUSWIDTH_1_BYTE,
.dma_burstsize = LPSS_DMA_MSIZE_8,
.rx_callback = pxa2xx_spi_dma_callback,
};
#define LPSS_IDMA_OFFSET 0x800
int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
{
struct ssp_device *ssp = drv_data->ssp;
struct lpss_dma_info *dma_info = &pxa2xx_dma_info;
int ret;
drv_data->dummy = lpss_dma_alloc(SZ_4K);
if (!drv_data->dummy)
return -ENOMEM;
/* setup lpss dma */
dma_info->pdev = &drv_data->pdev->dev;
dma_info->membase = drv_data->ioaddr + LPSS_IDMA_OFFSET;
dma_info->irq = ssp->irq;
snprintf(dma_info->name, sizeof(dma_info->name) - 1, "%s_%d", "pxa2xx-spi", ssp->port_id);
dma_info->per_tx_addr = dma_info->per_rx_addr = drv_data->ssdr_physical;
dma_info->callback_param = drv_data;
/* get baytrail or cherrytrail lpss dma info */
ret = lpss_get_controller_info(lpss_spi_dma, ssp->port_id - 1, dma_info);
if (ret < 0)
goto err;
drv_data->dma_priv = lpss_dma_register(dma_info);
if (!drv_data->dma_priv) {
ret = -ENODEV;
goto err;
}
return 0;
err:
lpss_dma_free(drv_data->dummy);
return ret;
}
void pxa2xx_spi_dma_release(struct driver_data *drv_data)
{
void *lpss_dma = drv_data->dma_priv;
lpss_dma_free(drv_data->dummy);
lpss_dma_unregister(lpss_dma);
}
void pxa2xx_spi_dma_suspend(struct driver_data *drv_data)
{
}
void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
{
}
int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
struct spi_device *spi,
u8 bits_per_word, u32 *burst_code,
u32 *threshold)
{
struct pxa2xx_spi_chip *chip_info = spi->controller_data;
/*
* If the DMA burst size is given in chip_info we use that,
* otherwise we use the default. Also we use the default FIFO
* thresholds for now.
*/
*burst_code = chip_info ? chip_info->dma_burst_size : 8;
*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
| SSCR1_TxTresh(TX_THRESH_DFLT);
chip->lpss_rx_threshold = SSIRF_RxThresh(*burst_code);
return 0;
}